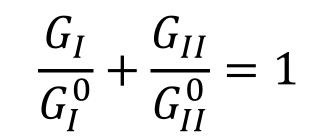
Experimental testing and numerical simulation of joints bonded with a new silylated polyurethane based flexible adhesive

<u>V.C.M.B. Rodrigues</u> (INEGI, Portugal), E.A.S. Marques, R.J.C. Carbas, M. Youngberg, A. Dussaud (Momentive Performance Materials Inc., Tarrytown, USA), B. Reza, L.F.M. da Silva

1. Introduction

Silylated polyurethane adhesives are hybrid formulations which promote adhesion, possess an elastomeric behaviour and vibration damping capabilities, being suitable for the automotive and sealant industry. The performance of a new SPU based adhesive was assessed in single lap joints using aluminium adherends with two overlap lengths. A numerical model was established to simulate the joint behaviour, using CZM. The model was validated by comparison of the mechanical characterization tests performed and the numerical outputs.

4. Numerical modelling

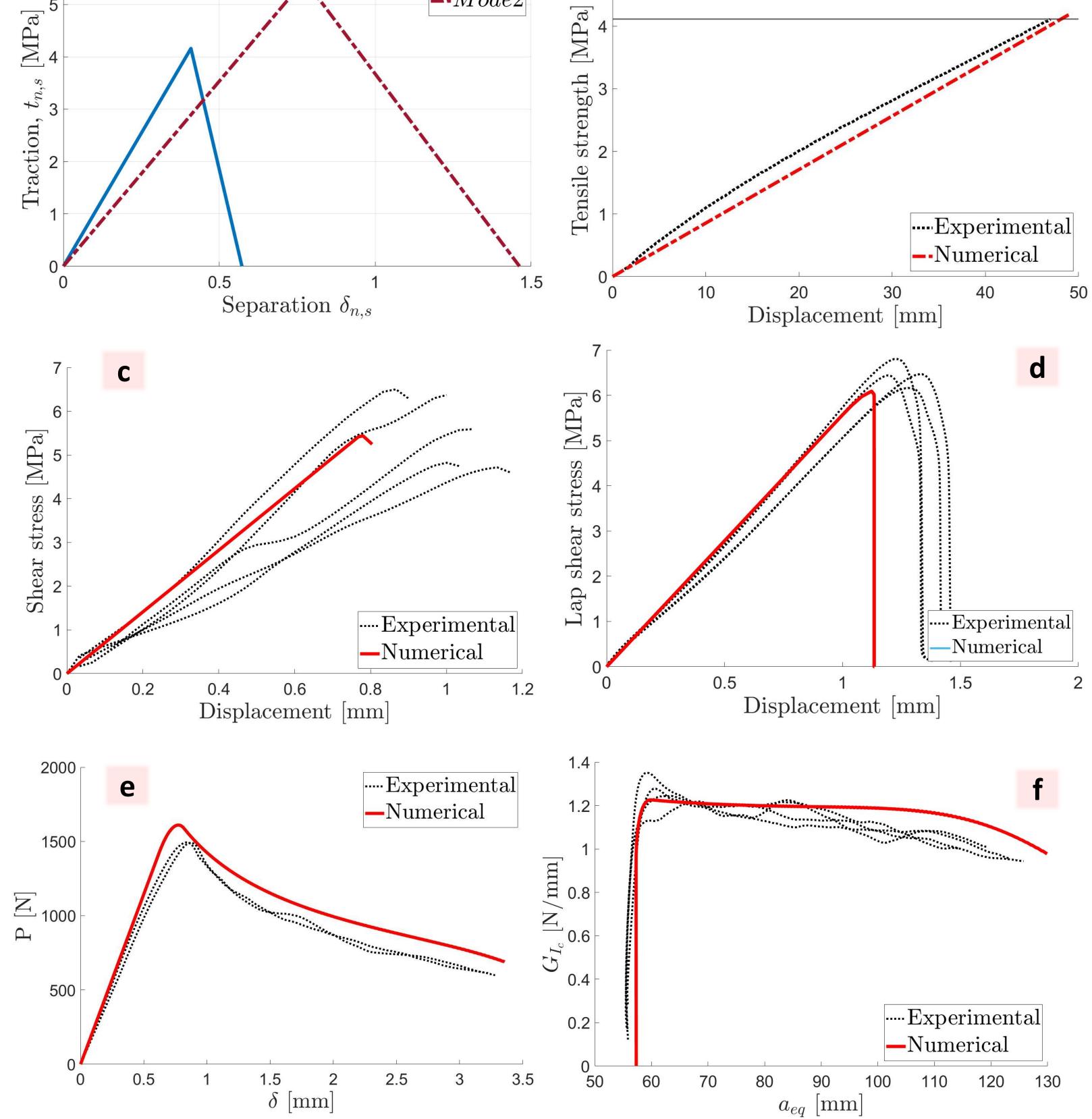

A CZM triangular shape law presented adequate results, provided the elastomeric behaviour of the material absent of any yielding point. The traction-separation law exhibits an initial elastic response followed by a linear degradation. For the initiation of damage, a quadratic nominal stress criterion was selected. A linear power-law was employed to predict the separation.

 $\begin{bmatrix} 6 \\ 5 \end{bmatrix}$ **a** $\begin{bmatrix} -Mode1 \\ -Mode2 \end{bmatrix}$

Advanced Joining Processes Unit

Quadratic nominal stress $\left\{\frac{\langle t_I \rangle}{t_I^0}\right\}^2 + \left\{\frac{t_{II}}{t_{II}^0}\right\}^2 = 1$

Linear power-law


b

2. Adhesive properties

The 2k adhesive was mechanically characterized following the standardize Bulk and TAST. The DCB and a mixed-mode apparatus were used to determine the G_{lc} and estimate the G_{llc} values [1,2].

Table 1 – Mechanical properties

Property	Units	2k SPU
Young's modulus, E	[MPa]	10.17 ± 0.96
Poisson's ratio, v	[-]	0.418 ± 0.009
Tensile failure strength, $\sigma_{\!f}$	[MPa]	4.16 ± 0.21
Tensile failure strain, ε_f	[%]	41.1 ± 5.8
Shear modulus, G	[MPa]	7.07 ± 1.53
Shear failure strength, $ au_f$	[MPa]	5.47 ± 0.74
Shear failure strain, γ_f	[%]	84.7 ± 11.5
Toughness in mode I, G_{lc}	[N/mm]	1.191 ± 0.055
Toughness in mode II, G _{IIc}	[N/mm]	4

3. Experimental results

SLJ of 25 and 50 [mm] overlap length were manufactured with anodized aluminium adherends. A cohesive failure was reported for both overlap lengths, exhibiting a similar lap shear strength.

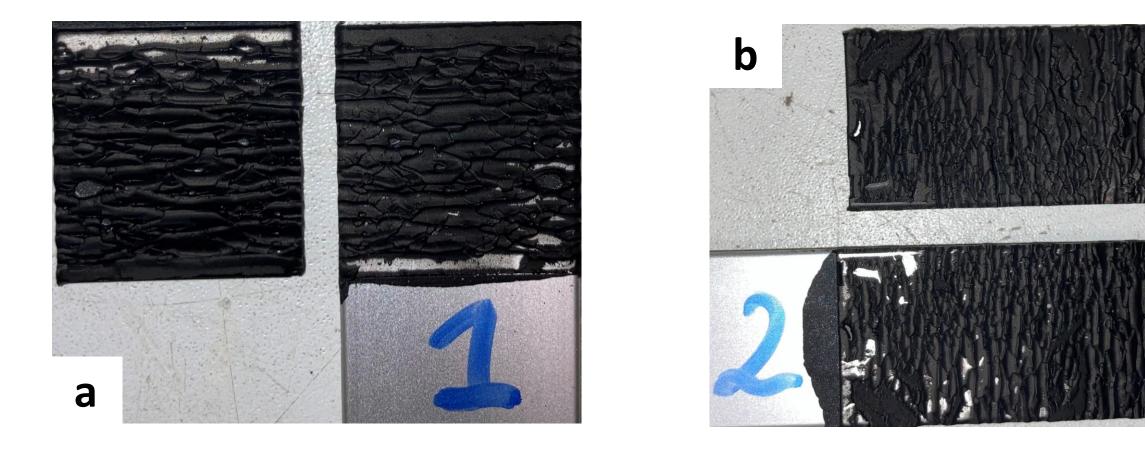


Figure 2 – Modes of failure: a) Al 25 [mm]; b) Al 50 [mm]

Table 2 – Lap shear strength for the SLJs tested

Adherend	Lap shear strength [MPa]		
Aunerenu	25 [mm]	50 [mm]	
Aluminium	6.47 ± 0.23	5.70 ± 0.57	

Figure 4 – Experimental versus numerical output data for the tested models: a) triangular shape cohesive law applied; b) tensile test; c) shear test; d) Aluminium SLJ 25 [mm] overlap; e) P-δ curve for DCB in mode I test; f) R-curve following CBBM

5. Conclusions

- The failure mode for the SLJs with different overlap lengths was cohesive, exhibiting an excellent bond when joining anodized aluminum substrates.
- The new SPU based adhesive behaved elastically and had no yield point. A CZM triangular shaped law was found to adequately model the in-joint behaviour of the adhesive under quasi-static conditions.

References



Figure 3 – Failure load vs overlap length for the aluminium SLJs

 M. Costa, R. Carbas, E. Marques, G. Viana, L.F.M. da Silva, An apparatus for mixed-mode fracture characterization of adhesive joints, Theoretical and Applied Fracture Mechanics, Volume 91, 2017, Pages 94-102, ISSN 0167-8442.
Banea, M. & Silva, L.F.M. & Campilho, Raul. (2011). Mechanical characterization of a high temperature epoxy adhesive. Welding Equipment and Technology. 22. 58-62.

 [3] Campilho, Raul & Banea, M. & Neto, J. & Silva, L.F.M. (2012). Modelling of Single-Lap Joints Using Cohesive Zone Models: Effect of the Cohesive Parameters on the Output of the Simulations. The Journal of Adhesion. 88. 513-533.
10.1080/00218464.2012.660834.

Acknowledgements

The authors express their sincere gratitude for the funding and support provided by *Fundação para a Ciência e Tecnologia* (FCT), Portugal.

